
Functions

Functions are the most important organizational
tool in programming. Although there are other
useful tools that we will cover in this course, once
you understand functions and how to build
programs with them you can call yourself a
programmer.

Three Big Ideas

We will spend the next few classes making sense
of these ideas.

First Big Idea

A function is a block of code that has a name.
We can execute the code just by using its name.
This is called calling the function.

We define a function with the word def.
Function names always have open and closed
parentheses after them; we will see the reason
for this momentarily.

For example, here is a function definition:

def starBox():
 for i in range(0, 3):
 print("***")

 print()

A call to this prints

A complete program with this function might be

def starBox():
 for i in range(0, 3):
 print("***")
 print()

starBox()
starBox()

This will print

Clicker Question
What will this program print?

def line():
 for i in range(2, 10, 2):
 print(i, end = " ")
 print()

line()
line()

Answers:
 A) 2 3 4 5 6 7 8 9

 B) 2 4 6 8

 C) 2 4 6 8 2 4 6 8

 D) 2 4 6 8
 2 4 6 8

One great advantage of functions is that they
break up code into coherent chunks and give
names to those chunks. This makes longer
programs much easier to understand. It also helps
you to think about the programs, which makes
them easier to write.

We are now in a position to understand how the text
presents programs. Every program in the textbook is
written as

def main():
 <code for the program>

main()

This creates a function called main() to hold the
program; the last line calls this function. Both C and
Java require programs to be written this way. Python
doesn't require it, but it is still a good idea.

For example,

def main():
 n = eval(input("Enter n: "))
 prod = 1
 for x in range(2, n+1):
 prod = prod*x
 print("The factorial of %d is %d"%(n, prod)

main()

This way every program will consist of a bunch of
function definitions. We run the program by
executing main(), which usually calls other
functions.

Second Big Idea

Functions can have their own variables. The
variables of a function can't be seen or referenced
outside the function. This means that two
functions can have variables with the same name.
Variable x in one function has nothing to do with
any other variable x in the program.

The Big Idea is that functions can have special
variables called parameters or arguments that
allow the caller of a function to give it initial data
values. The parameters go inside the parentheses
after the function name. When you call a function
whose definition has parameters you must supply a
value for each parameter. These values are called
the arguments of the call.

For example
def printStars(n):
 for i in range(0, n):
 print("*", end='')
 print()

printStars(3)
printStars(7)
printStars(2)

This prints ***

 **

If a function has multiple parameters, the
arguments are given in the same order as the
parameters.

def printChars(c, n):
 for i in range(0, n):
 print(c, end='')
 print()

printChars('+', 5)
printChars('*', 3)

This will print +++++

Clicker Question
What will this print?

def A(n):
 for i in range(0, n):
 print("*", end='')
 print()

def B(n):
 for i in range(1,n+1):
 A(2*i)

B(3)

Answers:
A) **

B) ***

C) *
**

That question would have been easier if we used
good names and comments:

def printStars(n):
 # This prints n stars on one line
 for i in range(0, n):
 print("*", end='')
 print()

def printTriangle(n):
 # This prints n rows where row i has 2*i stars
for i in range(1,n+1):
 printStars(2*i)

printTriangle(3)

Third Big Idea
We use parameters and arguments to put data
into a function. Functions can also give data back
to their callers by returning values.

For example,

 def square(x):
 return x*x

 def main():
 n = eval(input("number: "))
 nsq = square(n)
 print("The square of %d is %d."%(n, nsq))

 print(square(9))

 main()

Functions that return values act like nouns -- they
represent the values they return. Functions that
don't return values act like verbs -- they do
something when they are called.

def square(n):
 return n*n

def main():
 x = square(5)
 print(x)

def printSquare(n):
 print(n*n)

def main():
 printSquare(5)

Clicker Question
I am writing a function to return the number of
days in a year:
 def numDays(y):
 if isLeapYear(y):
 return 366
 else:
 return 365

What is isLeapYear(y)???
 A) A function that prints "that is leap year"
 if year y is a leap year
 B) A function that returns True
 if year y is a leap year

Note that a return statement causes the function
to immediately stop and return control to the
caller. For example, we could write an isPrime()
function like this:

def isPrime(x):
 for d in range(2, x):
 if x%d == 0:
 return False
 return True

One more clicker question. What will this program
print?

def foo(): Answers:
 return 3 A) 3, 125
 return 125 B) 3, 3
def main(): C) 125, 125
 x = foo() D) an error
 y = foo() message
 print(x, y)
main()

